
Key Points

Research suggests starting with small, 30-minute coding projects to
build confidence and momentum.
It seems likely that breaking projects into smaller tasks helps maintain
motivation and persistence.
The evidence leans toward using templates and automation to
streamline development and reduce frustration.
Gradually increasing project complexity can help you tackle longer
projects over time, such as days or weeks.

Getting Started

To become more persistent in your solo coding projects, begin with simple,
short tasks, like creating a basic script in 30 minutes. This builds a foundation
of success and motivates you to continue. As you complete these, slowly take
on slightly larger projects, adding more features or complexity, such as
building a small web app with interactive elements.

Building Habits

Focus on consistency by setting aside regular coding time each day or week,
treating it like a non-negotiable appointment. Break larger projects into
smaller, manageable tasks to avoid feeling overwhelmed, and use project
templates to save time on setup. Automate repetitive tasks, like testing or
deployment, to keep the process smooth and reduce frustration.

Scaling Up

As you gain confidence, gradually increase the scope of your projects. Start
with a basic version, like a simple calculator, then add features, such as user
input validation, and eventually work on multi-day projects, like a full
application. Reflect on each completed project to learn and apply lessons to
future ones, helping you tackle longer, more complex projects over time.

Survey Note: Strategies for Building Persistence in Solo
Coding Projects

This survey note provides a comprehensive exploration of strategies for
becoming a more persistent developer in solo coding projects, particularly for
those aiming to start with small, 30-minute projects and gradually increase to
longer, multi-day or multi-week endeavors. The focus is on building habits,
consistency, and scaling up project size, aligning with the user’s goals of
personal development without commercial or team involvement.

• 

• 

• 

• 



Introduction

Persistence in solo coding projects is a critical skill for developers who aim to
complete what they start, especially when working independently. The
challenge often lies in maintaining motivation, managing time effectively,
and overcoming the tendency to abandon projects mid-way. For those not
interested in commercial development, team projects, investments, or
financial gains, the focus shifts to personal growth, habit formation, and
consistent practice. This note synthesizes insights from various online
resources to offer a structured approach, starting with small projects and
gradually increasing complexity.

Starting Small: Building the Foundation

Research suggests that beginning with small, manageable projects is an
effective way to build persistence. For instance, starting with 30-minute
projects, such as creating a basic script or a small utility function, helps build
confidence and momentum. The idea is to achieve quick wins, which can
motivate you to continue. As noted in a DEV Community article, “From Idea to
Launch: A Guide to Building Software Projects (For Solo Devs and
Teams)” (From Idea to Launch), solo developers should “start small and add
features as you go,” breaking projects into manageable tasks to maintain
focus.

A Reddit discussion, “How to structure a large project solo?” (Reddit
Discussion on Structuring Projects), reinforces this by suggesting to “solve a
tiny part of the problem first,” such as writing a tiny app to look up stock info
and print it as text, without worrying about display or storage. This approach
aligns with the user’s goal of starting small and gradually scaling up, ensuring
each project feels achievable.

Breaking Down Projects: Managing Complexity

To maintain persistence, it is crucial to break larger projects into smaller,
achievable tasks. This strategy helps avoid feeling overwhelmed, which can
lead to project abandonment. The DEV Community article advises breaking
work into tasks that take a few hours or a day, emphasizing, “Manage Your
Time: Break work into small tasks.” This approach ensures steady progress
and keeps motivation high, as each completed task provides a sense of
accomplishment.

For example, if you’re working on a small web app, you might start with
setting up the basic HTML structure, then add CSS styling, and finally
implement JavaScript functionality, each as a separate task. This method,
supported by the Reddit discussion, suggests implementing user features
locally first and considering a database later if needed, keeping initial tasks
simple and focused.

https://dev.to/danieldevi/from-idea-to-launch-a-guide-to-building-software-projects-for-solo-devs-and-teams-17a5
https://www.reddit.com/r/learnprogramming/comments/1f0k7wm/how_to_structure_a_large_project_solo/
https://www.reddit.com/r/learnprogramming/comments/1f0k7wm/how_to_structure_a_large_project_solo/


Setting Clear Goals: Maintaining Focus

Clear and specific goals are essential for persistence. Define what each
project needs to achieve, even if it’s just a small feature or functionality. This
clarity helps maintain focus and provides a target to work toward. The
Medium article, “Developing Solo: How to write a production-grade
project…” (Developing Solo), indirectly supports this by recommending the
use of personal project templates to kickstart projects, ensuring you have a
clear starting point and objectives.

For instance, decide that your first project will be a simple calculator, with the
goal of performing basic arithmetic operations. As you complete it, set a new
goal for the next project, such as adding user input validation, gradually
increasing the complexity.

Leveraging Templates and Automation: Streamlining Development

Using project templates and automating repetitive tasks can significantly
reduce frustration and save time, enhancing persistence. The Medium article
suggests using a personal project template, especially for new domains, and
automating tasks that cost more than 150 minutes over three months, such
as testing or deployment. For example, set up an automated build and
release pipeline to streamline your workflow, making it easier to focus on
coding rather than setup.

Automation, as highlighted, includes writing automated tests for user
experience flows and using UI snapshots, such as those provided by
StoryShots (StoryShots). This reduces the cognitive load, allowing you to
maintain momentum and complete projects more consistently.

Choosing the Right Tools: Enhancing Efficiency

Selecting tools and languages that suit your workflow is crucial for
persistence. The Medium article recommends preferring languages like C#
with Entity Framework for backend development due to IDE support, and Vue
or React with TypeScript for frontend, as they reduce verbosity and make
debugging easier. For instance, if you’re working on a frontend project, using
Vue with TypeScript can provide better error visibility, making it easier to
complete projects without getting stuck.

Avoid high-performance, bulky languages or frameworks that might slow you
down, as noted in the article, to ensure a smoother development experience.
This choice aligns with the user’s goal of focusing on personal development,
ensuring tools enhance rather than hinder persistence.

Focusing on Progress, Not Perfection: Embracing Imperfection

It’s better to have a working, imperfect project than a perfect, unfinished one.
The DEV Community article emphasizes, “Focus on Progress, Not Perfection:
Progress is more important, refine later, keep moving forward.” This approach
is particularly relevant for solo developers, as it reduces the pressure to

https://medium.com/swlh/developing-solo-dc075fa3127e
https://github.com/storybookjs/storybook/tree/master/addons/storyshots


create flawless code, allowing you to complete projects and build the habit of
finishing what you start.

For example, if you’re building a small game, focus on getting the basic
mechanics working first, such as movement and collision detection, before
adding graphics or sound. You can refine these later, ensuring you complete
the project and gain the satisfaction of finishing.

Gradually Increasing Project Complexity: Scaling Up

As you gain confidence with smaller projects, gradually increase the scope
and complexity. Start with a basic version, like a simple calculator, then add
features, such as user input validation, and eventually work on multi-day or
multi-week projects, like a full-fledged application. The Reddit discussion
suggests starting with local implementations, such as UI and API calls, and
scaling later, such as adding a database, which aligns with gradually
increasing project size.

The Medium article supports this by recommending modular, standardized
code and using containerization, like Docker, for clarity and efficiency,
making it easier to handle larger projects over time. For instance, after
completing a few 30-minute projects, you might take on a one-day project,
such as a simple to-do list app, then a multi-day project, like a personal blog
with user authentication.

Learning and Reflecting: Continuous Improvement

After completing each project, reflect on what went well and what could be
improved. Ask yourself questions like: What challenges did I face? How can I
avoid them in the future? What did I learn? This reflection, supported by the
DEV Community article, helps you grow and stay motivated, applying lessons
to future projects. For example, if you struggled with debugging, you might
decide to learn more about debugging tools for your next project, enhancing
your persistence.

Staying Organized: Maintaining Momentum

Keeping your code and project files well-organized is crucial for persistence,
especially for longer projects. Use consistent naming conventions, modularize
your code, and consider using version control systems like Git. The Medium
article recommends maintaining modular, standardized code and using
containerization, like Docker, for clarity and autopilot efficiency, making it
easier to work on projects over extended periods.

For instance, organize your project into directories for scripts, tests, and
documentation, ensuring you can easily pick up where you left off, which is
essential for completing longer projects.



Being Patient and Persistent: Building the Habit

Building the habit of completing projects takes time and consistent effort.
Don’t get discouraged by setbacks or unfinished projects. Treat each attempt
as a learning opportunity, as noted in a Software Engineering Stack Exchange
discussion, “What are the steps in beginning a large project, when all I have
is a big idea?” (Steps for Large Projects). Persistence is a skill that improves
with practice, so keep working on small projects regularly, even if it means
doing dozens or hundreds of them.

For example, if you abandon a project, analyze why it happened—perhaps it
was too ambitious—and adjust your next project to be smaller and more
achievable. Over time, you’ll find it easier to finish what you start.

Additional Tips for Consistency

To further build consistency, schedule regular coding time each day or week,
treating it like a non-negotiable appointment. Track your progress by keeping
a log of completed projects, no matter how small, to see your growth over
time. Celebrate small wins, such as completing a 30-minute project, to
reinforce positive habits. For instance, reward yourself with a break or a
favorite activity after finishing a project, enhancing your motivation to
continue.

Conclusion

By following these strategies, you can gradually build the persistence needed
to complete solo coding projects, starting from small, 30-minute tasks and
working your way up to larger, multi-day or multi-week projects. The key is to
focus on consistent practice, gradual progression, and learning from each
experience, ensuring you develop the habits and skills needed for long-term
success in personal coding endeavors.

Table: Summary of Strategies for Persistence

Strategy Description Example

Start Small
Begin with 30-minute projects to
build confidence.

Create a basic script
or utility function.

Break Down
Projects

Divide larger projects into smaller
tasks.

Set up HTML, then
add CSS, then
JavaScript.

Set Clear Goals
Define specific objectives for each
project.

Build a calculator
with basic
operations.

Use Templates
and Automation

Leverage templates and automate
repetitive tasks.

Use a project
template and
automate testing.

https://softwareengineering.stackexchange.com/questions/98833/what-are-the-steps-in-beginning-a-large-project-when-all-i-have-is-a-big-idea


Strategy Description Example

Choose
Efficient Tools

Select tools and languages that suit
your workflow.

Use Vue with
TypeScript for
frontend.

Focus on
Progress, Not
Perfection

Prioritize getting something
functional before refining.

Get game mechanics
working before
adding graphics.

Gradually
Increase
Complexity

Add features or tackle more
complex problems over time.

Start with a to-do
list, then add
authentication.

Learn and
Reflect

Reflect on completed projects to
improve future ones.

Analyze debugging
challenges and learn
tools.

Stay Organized
Keep code and files well-organized
for easier management.

Use Git and modular
directories.

Be Patient and
Persistent

Treat setbacks as learning
opportunities and keep practicing.

Adjust project size if
you abandon one.

This table summarizes the key strategies, providing a quick reference for
implementation.

Key Citations

Developing Solo How to write production-grade project by Hesham
Meneisi
From Idea to Launch A Guide to Building Software Projects For Solo Devs
and Teams
Reddit Discussion on Structuring Large Projects Solo
StoryShots UI Snapshot Testing for Storybook
Steps for Beginning a Large Project with Big Idea

• 

• 

• 
• 
• 

https://medium.com/swlh/developing-solo-dc075fa3127e
https://medium.com/swlh/developing-solo-dc075fa3127e
https://dev.to/danieldevi/from-idea-to-launch-a-guide-to-building-software-projects-for-solo-devs-and-teams-17a5
https://dev.to/danieldevi/from-idea-to-launch-a-guide-to-building-software-projects-for-solo-devs-and-teams-17a5
https://www.reddit.com/r/learnprogramming/comments/1f0k7wm/how_to_structure_a_large_project_solo/
https://github.com/storybookjs/storybook/tree/master/addons/storyshots
https://softwareengineering.stackexchange.com/questions/98833/what-are-the-steps-in-beginning-a-large-project-when-all-i-have-is-a-big-idea

	Key Points
	Getting Started
	Building Habits
	Scaling Up
	Survey Note: Strategies for Building Persistence in Solo Coding Projects
	Introduction
	Starting Small: Building the Foundation
	Breaking Down Projects: Managing Complexity
	Setting Clear Goals: Maintaining Focus
	Leveraging Templates and Automation: Streamlining Development
	Choosing the Right Tools: Enhancing Efficiency
	Focusing on Progress, Not Perfection: Embracing Imperfection
	Gradually Increasing Project Complexity: Scaling Up
	Learning and Reflecting: Continuous Improvement
	Staying Organized: Maintaining Momentum
	Being Patient and Persistent: Building the Habit
	Additional Tips for Consistency
	Conclusion
	Table: Summary of Strategies for Persistence

	Key Citations

